Как держится самолет в воздухе. Приоткрываем завесу. Как взлетают самолеты? Сейчас мы попробуем с этим разобраться

Большинство пассажиров, которые используют авиационный транспорт для перемещения, имеют страхи, связанные с взлетом самолета. Сегодня мы окончательно развеем эти опасения.

К написанию этой статьи я приступил из-за сообщения одного из читателей, который предоставил мне ссылку на несколько взлетов авиалайнеров с аэропорта Курумоч, который в городе Самара. В полученных мною видео очень любопытный пассажир ведет съемку с борта самолета.

Сейчас мы попробуем с этим разобраться!

Опытные пассажиры, которые довольно часто осуществляют перелеты воздушным транспортом, знают о старой традиции, которая была введена при полетах на отечественных самолетах. Прежде чем взлететь, выходя на полосу взлета, самолет делал остановку на несколько минут, это как бы пилоты давали возможность пассажирам помолиться. В это же время молились и пилоты лайнера, так они называли это время, за которое проводили изучение карты полета и определение контрольных точек на маршруте. По истечении этого времени самолет активно устремлялся по взлетной полосе, при этом стоял рев и чувствовалась дрожь всего аппарата. В этот момент хочешь не хочешь, но начнешь креститься. После этого пилоты отпускали тормоза, что еще больше вдавливало пассажиров в кресла сидений и нагоняло жути. При всем этом зачастую начинали отрываться полки с багажом, а у бортпроводниц что-то падало.

Как взлетает самолет, видео из кабины.

При отрыве становится немного тише и спокойней, но после отрыва самолет постепенно начинает заваливаться вниз!

Все же пилотам удается выровнять аппарат, также могут пару раз отказать двигатели при наборе необходимой высоты, а уже только тогда становится все нормально. Бортпроводницы с безразличными лицами предлагают напитки, а плохо молящимся предлагают кислородную маску. Но только потом наступает тот момент, ради которого и используют воздушный транспорт пассажиры – проводится разнос пищи.

Вроде все указал? Именно такое впечатление должно складываться у человека после чтения отзывов непрофильных форумов.

Нужно разобраться.

Как говорится, расставим все точки над «и» о причинах остановки самолета на ВПП перед непосредственным взлетом. Необходим этот момент перед взлетом или это причуды пилотов?

В этом случае нужно сказать, что оба варианта взлета являются правильными. Современное обучение методике взлета гласит, что остановка перед взлетом является необязательной процедурой, но она может проводиться в случае веской необходимости. Такими необходимостями могут быть:

  • При размышлении диспетчера, выпускать самолет или немного придержать с целью безопасности взлета.
  • При ограниченной длине взлетной полосы.

С первой причиной, я думаю, всем понятно.

Что касается второй причины с ограниченной длиной взлетного полотна, то здесь необходима остановка в случае перегруза самолета. Масса может впритык подходить для осуществления взлета с такой длины. Для этого экономят каждый метр полосы, а остановка позволяет довести обороты двигателей до повышенных режимов работы, при этом машина держится на тормозах. Очень часто данную процедуру проводят даже пилоты на легких аппаратах, как говорится, на всякий случай.

Также подобный отрыв возможен и при сложной географической обстановке, например, взлет с Шамбери. Необходимо проводить остановку и разгонять двигатели, что поможет провести быстрый отрыв от полосы, поскольку за ее окончанием начинается горный массив. Кроме того, практически все аппараты имеют большой вес.

Все же при большинстве случаев с допуска диспетчера и нормальной длиной полосы остановка не осуществляется. После рулежной дорожки лайнеры не останавливаются, а сразу же начинают разбег, прежде убедившись в прямолинейном движении, пилоты только добавят обороты двигателей.
Стоп!
А как же поступить с молитвой? Ведь вначале шлось про некую проверку контрольных точечек и изучение карты полета.

Принято не зачитывать В737 до получения разрешения от диспетчера на занятие взлетной полосы, а тем более до получения на сам взлет. Именно поэтому, когда я получаю одновременно разрешение занять полосу и взлетать, я абсолютно готов к выполнению взлета. Пассажирам только кажется, что я тороплюсь, но это вовсе не так, поскольку я уже готов.

Существуют и преимущества во взлете без остановки:

  • Прежде всего, взлет без остановки позволяет аэропорту увеличить пропускную способность самолетов. Это объясняется очень легко: чем меньше времени самолет проводит на взлетной полосе, тем больше лайнеров сможет отправить в полет или принять аэропорт.
  • Также выполнение взлета без остановки позволяет экономить топливо, поскольку не осуществляется остановка и разгон двигателей, при котором выгорает много топлива.
  • Третьим преимуществом является безопасность, с первого взгляда можно подумать, что это странное преимущество. Все же чем меньше времени самолет с рабочими двигателями находится на полосе, тем меньшая вероятность попадания в турбины посторонних предметов, которые могут привести к помпажу и отказу двигателя.

Летим дальше!

Зачем при взлете пилоты сильно задирают носовую часть машины? При взлете отечественной техники этот процесс делали не спеша и более плавно… Такой взлет может привести к аварии!

Причиной всего – обычная аэродинамика и выполнение технологии взлета. Аппараты иностранного производства в основном при взлете слабо отклоняют весь механизм крыльев. В свою очередь это дает следующие преимущества:

  • Становится большим угол набора высоты.
  • За счет большого угла при отрыве значительно снижается шумовой эффект на окружающей местности.
  • Также это позволяет столкнуться с препятствиями при отказе одного из двигателей.

Современные пассажирские авиалайнеры обладают очень мощными двигателями, что даже при отказе одного из них можно произвести безопасную посадку. Все же в некоторых ситуациях рекомендуется включать полную тягу двигателей, при малой загруженности машины это может превратить ее в ракету.

Максимальная тяга двигателей предоставляет некий дискомфорт пассажирам в салоне, конечно же, это в случае, когда Вам не особо нравится лететь с задранными вверх ногами. Но подобное положение при взлете длится недолго.

«Чуть не упали после взлета»

Выше в статье я писал, что после отрыва и взлета самолет как бы начинает падать вниз. Подобная ситуация очень хорошо ощутима при полете на самолете типа Ту-154, он достаточно тяжело взлетает при большом угле открытия закрылков, после чего они становятся в состояние горизонтального полета. При переходе положения закрылок и ощущается снижение высоты, поскольку опускается нос машины. Нужно отметить, что в случае очень быстрого закрытия закрылок самолет действительно может потерять высоту, но для этого нужно быть совсем неопытным пилотом, тем более что их в кабине два.

Также ощущение заваливания аппарата ощутимо и во время смены угла набора высоты на более пологий, но это только ощущения, в действительности самолет контролируется и не падает.

«Во время полета несколько раз выключали турбины двигателей»

Именно о подобных ситуациях наиболее часто пишут пассажиры самолетов. С этими высказываниями могут конкурировать за первенство лишь рассказы о том, как пилоты смогли посадить самолет на полосу только с пятой попытки. Наибольше подобных рассказов о таких лайнерах, как Ту-134 или Ту-154. В них действительно двигатели расположены в хвостовой части аппарата и их практически не слышно в пассажирском салоне, кроме ситуаций, когда они работают на максимальных оборотах.

Именно в шуме от двигателей и скрывается загвоздка якобы «отключения двигателей». На самом деле все очень просто и понятно. При взлете и наборе высоты двигатели самолетов действительно работают на повышенных режимах, что сопровождается высоким звуковым эффектом. Часто пилоты получают команды от диспетчеров о прекращении поднятия машины, чтобы разминуться с другими самолетами в воздухе. При этом лайнер переводится в горизонтальный режим полета, чтобы не стать сверхзвуковым самолетом, необходимо снизить тягу двигателей. При этом в салоне самолета снижается уровень шума, за счет этого пассажиры думают, что двигатели отключены.

Мы расскажем Вам, почему важно пройти обучение на пилота , знать что такое пилотирование самолета и как летает самолет .

Для курсанта, начинающего обучение на пилота самолета, это может стать не самым приятным сюрпризом. Давно пора возвращаться на землю, а самолет все еще летит.

В 20-е годы прошлого века авиаконструкторы столкнулись со странным явлением. Самолеты, построенные по всем законам классической аэродинамики, вдруг оказались непригодными для использования с существующей инфраструктурой. Казалось бы, все сто раз посчитано и просчитано, но вопреки цифрам и здравому смыслу самолет не может «вписаться» в длину посадочной полосы. Позднее для борьбы с этим явлением придумали интерцепторы (они же спойлеры), а сам эффект получил название «экрана».

Ученые авторы пособий по аэродинамике предлагают сложное определение экранного эффекта. Им, ученым, так по статусу положено. Реальные же пилоты объясняют все гораздо проще:
«Экран на посадке ощущаешь пятой точкой. Когда режим двигателям убрал, скорость минимальная, а самолет «почему-то» садиться не хочет».

Со стороны это выглядит так, будто самолет возомнил себя планером, или летчик решил поиграться в парашютиста: есть у них такая дисциплина, в которой кто дальше пролетит горизонтально над землей, тот самый крутой.

Разумеется, каждый пилот самолета , узнав что такое пилотирование самолета и как летает самолет в летной школе, прекрасно знает, что в так называемой «зоне влияния земли» возможен экранный эффект (в английском языке используется гораздо более понятный термин ground effect). Но часто его ошибочно называют «воздушной подушкой». На самом деле эффект планирования на сверхмалой высоте имеет отношение к воздушной подушке только в одном случае. Если вы летаете на чем-то таком:

А вот почему это происходит в авиации, давайте разберем.

Обучение на пилота: теория прежде всего

Если бы стояла задача, объяснить экранный эффект в двух словах, это были бы слова wingtip vortices. Дословно – вихри на концах крыла. На современном этапе развития авиастроения они являются предметом главной головной боли конструкторов.

Именно концевые вихри индуцируют сопротивление, которое так и называется «индуктивное» и для борьбы с которым приходится тратить лишнее топливо. Именно они оставляют позади летящего самолета спутный след, в который может попасть другой самолет, что уже не раз становилось причиной авиакатастроф. Наконец, именно они создают экранный эффект, добавляя пилоту хлопот на приземлении.
Осталось понять, откуда они берутся.

Как летает самолет

Как обычно, все начинается с азов. Благодаря особой форме профиля набегающий поток воздуха обтекает крыло по-разному. Снизу быстрее, сверху – медленнее. Возникает разница давлений, в результате которой более плотный воздух снизу как бы «выдавливает» крыло вверх. Это самое примитивное объяснение возникновения подъемной силы.

Но крыло (к великому сожалению авиаконструкторов) не бесконечно, поэтому где-то обязательно возникает область, в которой плотный воздух снизу и разреженный сверху соприкоснутся. Несложно догадаться, что произойдет это там, где крыло кончается.

Теперь вспоминаем школьный курс физики и принцип сообщающихся сосудов. Если в одной части давление больше, а в другой меньше, молекулы газа будут вести себя так, чтобы давление уравновесилось. Иными словами, из области высокого давления воздух стремится убежать в область низкого. Как ему это сделать? Разумеется, через ту же законцовку крыла (на самом деле процесс происходит и в других частях крыла, но именно здесь он наиболее выраженный). Воздух из-под нижней плоскости крыла движется наверх, создавая на кончиках крыла направленные вверх завихрения.

Но самолет-то в это время продолжает лететь вперед! В результате каждый такой поток закручивается в спираль. Это и есть концевой вихрь (он же вихревой жгут, он же спутный вихрь или спутный след).

Иногда такие вихри можно наблюдать невооруженным глазом. Например, во время авиашоу, когда сверхзвуковые истребители выполняют фигуры высшего пилотажа, а погода достаточно влажная, за ними отчетливо видна спутная струя. Вот это оно и есть.

Бороться можно, но сложно

В принципе, концевые вихри затухают буквально через несколько минут, но за большим тяжелым самолетом могут растянуться на километры. Пилот самолета , летящего следом, рискует попасть в такую сильную турбулентность, которая чревата полной потерей управляемости.

Пока аэропорты вкладывают миллионы денег в разработку систем, которые позволят рассеивать вихревой след, авиаконструкторы уже придумали способ минимизировать его образование. Для этого на современные пассажирские авиалайнеры ставят законцовки особой формы – винглеты или шаркелетты. Они изгибаются кверху, тем самым лишая воздух возможности свободно перетекать снизу вверх.

Аэропортам это нужно, чтобы минимизировать интервал между взлетами и посадками, а авиакомпаниям – чтобы сократить издержки. Чем слабее концевой вихрь, тем меньше индуктивное сопротивление, тем ниже расход топлива.

Недавно винглетами оснастили даже ремортизированного «старичка» Ан-2. Но помимо преимуществ у винглетов есть и недостатки: экономия топлива происходит в основном в крейсерском режиме полета на большой скорости на длинные расстояния. Так что малой авиации с ее частыми взлетами-посадками и короткими маршрутами технологическая революция в ближайшей перспективе вряд ли грозит. Придется научиться летать с тем, что есть.

Летная школа: еще немного теории

Все описанное выше относилось к полету на высоте. Теперь представим, что самолет с тянущимся по обе стороны шлейфом концевых вихрей идет на посадку.
Картинки ниже даже не требуют особых пояснений.

В первом варианте (на высоте) вихревые потоки проворачиваются по такой траектории, которая создает дополнительное давление вниз. То есть подъемная сила крыла становится меньше. Но когда самолет приближается к земле (или воде), концевой вихрь разбивается о препятствие. Таким образом, подъемная сила крыла становится больше, хотя другие условия (скорость, угол атаки и т.д.) не изменились.
Но и это еще не все.

На высоте концевые вихри создают дополнительное давление на верхнюю плоскость крыла. Иными словами, возрастает вертикальная скорость, направленная вниз. Из-за этого воздух, который обтекает крыло сверху, тоже меняет свое направление. Возникает так называемый скос потока.

Около земли концевые вихри «разбиваются» о поверхность. Давление на верхнюю плоскость крыла ослабевает, соответственно скос потока становится меньше:

Пилотирование самолета: куда косит поток

Говоря про меньший скос потока, мы подразумеваем, что воздух обтекает верхнюю плоскость крыла ровнее. Направление его движения становится более пологим, ближе к горизонтали. А как известно, подъемная сила, всегда перпендикулярна набегающему потоку. Чем горизонтальнее поток, тем явственнее вектор подъемной силы направлен вверх – в противовес силе тяжести.

На высоте скос потока выражен сильнее, поэтому вектор подъемной силы отклоняется назад. Но самолету надо лететь вперед! Решить это противоречие можно увеличив тягу двигателей, заплатив взамен повышенным сопротивлением. Проще говоря, чем ровнее (горизонтальнее) набегающий поток, тем меньше он сопротивляется разрезающему его крылу. Чтобы представить себе, как это все работает, можно внимательно рассмотреть рисунок выше, а можно просто запомнить:

Чем меньше скос потока -> тем меньше сопротивления -> тем больше подъемной силы.

А чем больше подъемная сила и меньше сопротивления, тем дальше самолет планирует, не желая опускаться на бренную землю.

Ни высоко, ни низко, ни далеко, ни близко

Аэродинамика – наука точная, и абстрактные понятия здесь не совсем уместны. Действительно, что значит «экранный эффект проявляется недалеко от земли»? Насколько недалеко?

Очевидно, что если первоисточником экрана являются концевые вихри, то все зависит от габаритов самолета. Чем он больше и тяжелее, тем больше в диаметре срывающиеся с его законцовок вихри. Поэтому большой самолет почувствует эффект влияния земли на большей высоте.

Но тогда почему самый популярный самолет чтобы пройти обучение на пилота - Cessna 172 и, скажем, Piper Warrior, которые находятся примерно в одной весовой категории, планируют по-разному? При одинаковой скорости и погодных условиях, Цесна приземлится заметно ближе.

Ответ – в расположении крыльев. Пайпер – так называемый низкоплан. Его крылья расположены в нижней части фюзеляжа. То есть они гораздо ближе к земле. А раз так, то и эффект влияния земли ощущается сильнее.

Принято считать, что он возникает, когда расстояние до земли равно размаху крыла или меньше. Но сильнее всего экранный эффект проявляется на высоте, равной 20% от размаха. В этот момент крыло индуцирует всего 60% от своего обычного сопротивления. Впрочем, без примеров все равно неубедительно.

Допустим, мы собрались научиться летать самолете Цессна 172. Размах ее крыла составляет 11 метров. 20% - это примерно 2 метра. Иными словами, когда Цессна (точнее, ее крыло) окажется на высоте 2 метра с небольшим, преодолеть оставшееся до земли расстояние может быть не совсем просто.

У Пайпера практически тот же размах (10,5 м), но в отличие от Цессны, его крылья находятся на высоте буквально метр от земли. Следовательно экранный эффект летчик почувствует примерно на той же высоте (2 метра), но его крылья в этот момент будут чуть ли не в двое ниже, чем у коллеги из Цессны. Соответственно, скос потока будет меньше, а сопротивление составит всего 40% от обычного. Понятно, что не меняя скорости такой самолет пролетит гораздо дальше.

Делать-то что?

Может сложиться впечатление, что экранное влияние земли – это сплошные проблемы. Но иногда он все же бывает полезен. Во время Второй мировой войны американские бомбардировщики B-29 летали на сверхдальние расстояния с авиабазы на Марианских островах в Японию. Отказы двигателей в то время считались обычным делом, и очень часто экипажи были вынуждены возвращаться с одним двигателем. Это вызывало кучу проблем – необходимость маневрировать резко сужала возможности, увеличивала расход топлива, и пилотам часто приходилось бросать пилотирование самолета катапультироваться в бескрайние воды Тихого океана. Тогда пилоты приспособились летать на малой высоте, используя экранирующий эффект воды, чтобы разгрузить двигатели.

В малой авиации экранный эффект может пригодиться при посадках на грунтовые полосы, особенно в пору осенне-весенней распутицы. Понимая, как летает самолет и что с ним происходит, можно по примеру планеристов сознательно увеличивать дистанцию горизонтального полета, выбирая для посадки кусочек посуше.

С другой стороны, если в момент посадки вы обнаружили себя летящим там, где по всем расчетам уже должны были кататься, возможно, стоит уйти на второй круг и построить заход с учетом экранного эффекта.

У некоторых исследователей появлялись безумные идеи – они хотели полететь, но почему же результат оказался таким плачевным? Давно проводились попытки приделать к себе крылья, и, махая ими, взлететь в небо как пернатые. Оказалось, что силы человека недостаточно для поднятия себя на машущих крыльях.

Первыми народными умельцами были естествоиспытатели из Китая. Сведения о них записаны в «Цань-хань-шу» в первом веке нашей эры. Дальше история пестрит случаями подобного рода, которые происходили и в Европе, и в Азии, и в России.

Первое научное обоснование процессу полета дал Леонардо да Винчи в 1505 году. Он заметил, что птицам не обязательно махать , они могут держаться на неподвижном воздухе. Из этого ученый сделал вывод, что полет возможен, когда крылья движутся относительно воздуха, т.е. когда машут крыльями при отсутствии ветра или когда при неподвижных крыльях.

Почему же самолет летит?

В 1738 г. швейцарский ученый Данииил Бернулли вывел , названный его именем. Согласно этому при возрастании скорости потока жидкости или газа статическое давление в них падает и наоборот, при снижении скорости – возрастает.

В 1904 году ученый Н.Е. Жуковский разработал теорему о подъемной силе, действующей на тело, обтекаемое плоскопараллельным потоком газа или жидкости. Согласно этой теореме, на тело (крыло), находящееся в движущейся жидкостной или газовой среде, действует подъемная сила, которой зависит от параметров среды и тела. Главным результатом работы Жуковского стала формула коэффициента подъемной силы.

Подъемная сила

Профиль крыла самолета несимметричен, верхняя его часть является более выпуклой, чем нижняя. При движении самолета скорость воздушного потока, проходящего сверху крыла, оказывается выше скорости потока, проходящего снизу. В результате этого (по теореме Бернулли) давление воздуха под крылом самолета становится выше давления над крылом. Вследствие разности этих давлений возникает подъемная сила (Y), толкающая крыло вверх. Ее значение равно:
Y = Cy*p*V²*S/2, где:
- Cy – коэффициент подъемной силы;
- p – плотность среды (воздуха) в кг/м³;
- S – площадь в м²;
- V – скорость потока в м/с.

Под действием разных сил

На самолет, движущийся в воздушном пространстве, действуют несколько сил:
- сила тяги двигателя (винтового или реактивного), толкающая самолет вперед;
- лобовое сопротивление, направленное назад;
- сила притяжения Земли (вес самолета), устремленная вниз;
- подъемная сила, толкающая самолет вверх.

Значение подъемной силы и лобового сопротивления зависит от формы крыла, угла атаки (угла, под которым поток встречает крыло) и от плотности воздушного потока. Последняя в свою очередь зависит от скорости движения самолета и от атмосферного давления воздуха.

При разгоне самолета и увеличении его скорости, подъемная сила возрастает. Как только она превышает вес самолета, он взлетает вверх. При горизонтальном движении самолета с постоянной скоростью все силы являются уравновешенными, их результирующая (суммарная сила) равна нулю.
Форма крыла подбирается такой, чтобы лобовое сопротивление было как можно меньше, а подъемная сила – как можно больше. Подъемную силу можно увеличивать, повышая скорость движения и площадь крыльев. Чем выше скорость движения, тем меньшей может быть площадь крыльев и наоборот.

Видео по теме

Полезный совет

Теорема Н.Е. Жуковского известна также под именем теоремы Кутта-Жуковского. Это вызвано тем, что параллельно с русским ученым исследованиями по изучению подъемной силы занимался и немецкий ученый Мартин Кутт.

О существовании подъемной силы ученые и исследователи знали и до открытия теоремы Жуковского. Однако ее природа объяснялась по иному – как следствие ударения о тело частиц воздуха по теории Ньютона. С учетом этого была даже разработана формула расчета подъемной силы, однако ее применение давало заниженное значение подъемной силы.

Источники:

  • Гидродинамика и аэродинамика. Подъемная сила крыла и полет самолета.
  • почему летают самолеты

В декабре 1903 года братья Райт успешно испытали первый летательный аппарат тяжелее воздуха, соединив планер с мотором. Тот прототип самолета был примитивным и лишь отдаленно напоминал современные крылатые машины. В последующие десятилетия конструкция самолета дорабатывалась и совершенствовалась. В итоге самолет получил то устройство, основные черты которого сохранились и сегодня.

Инструкция

Основная часть любого самолета – корпус, который в принято фюзеляжем. Корпус имеет специальный отсек – кабину, в которой располагаются пилоты. Транспортные и пассажирские

Человечество издавна интересовал вопрос, как же так получается, что многотонный летательный аппарат легко поднимается к небесам. Как же происходит взлет и как летают самолеты? Когда авиалайнер движется на большой скорости по взлетной полосе, у крыльев появляется подъемная сила и работает снизу вверх.

При движении воздушного судна вырабатывается разница давлений на нижнюю и верхнюю стороны крыла, благодаря чему получается подъемная сила, удерживающая воздушное судно в воздухе. Т.е. высокое давление воздуха снизу толкает крыло вверх, при этом низкое давление сверху затягивает крыло на себя. В результате крыло поднимается.

Для взлета авиалайнера, ему необходим достаточный разбег. Подъемная сила крыльев увеличивается в процессе набора скорости , которая должна превысить предельный взлетный режим. Затем пилот увеличивает угол взлета , отводя штурвал к себе. Носовая часть лайнера поднимается вверх, и машина поднимается в воздух.

Затем убираются шасси и выпускные фары . С целью уменьшения подъемной силы крыла, пилот постепенно выполняет уборку механизации. Когда авиалайнер достигнет необходимого уровня, летчик устанавливает стандартное давление, а двигателям – номинальный режим . Чтобы посмотреть, как взлетает самолет, видео предлагаем просмотреть в конце статьи.

Взлет судна выполняется под углом . С практической точки зрения этому можно дать следующее объяснение. Руль высоты – это подвижная поверхность, управляя которой можно вызвать отклонение самолета по тангажу.

Рулем высоты можно управлять углом тангажа, т.е. изменять скорость набора или потери высоты. Это происходит вследствие изменения угла атаки и силы подъема. Увеличивая скорость двигателя, пропеллер начинает крутиться быстрее и поднимает авиалайнер вверх. И наоборот, направляя рули высоты вниз, нос самолета опускается вниз, при этом скорость двигателя следует уменьшать.

Хвостовая часть авиалайнера укомплектована рулем направления и тормозами на обе стороны колес.

Как летают авиалайнеры

Отвечая на вопрос, почему летают самолеты, следует вспомнить закон физики. Разница давлений воздействует на подъемную силу крыла.

Скорость потока будет больше, если давление воздуха будет низким и с точностью, наоборот.

Поэтому, если скорость авиалайнера большая, то его крылья приобретают подъемную силу, которая толкает воздушное судно.

Еще на подъемную силу крыла авиалайнера влияют некоторые обстоятельства: угол атаки, скорость и плотность потока воздуха, площадь, профиль и форма крыла.

Современные лайнеры имеют минимальную скорость от 180 до 250 км/час , при которых осуществляется взлет, планирует в небесах и не падает.

Высота полета

Какая же предельная и безопасная высота полета самолета.

Не все суда имеют одинаковую высоту полета , «воздушный потолок» может колебаться на высоте от 5000 до 12100 метров . На больших высотах плотность воздуха минимальная, при этом лайнер достигает наименьшего сопротивления воздуха.

Двигателю лайнера необходим фиксированный объем воздуха для сжигания, потому как двигатель не создаст нужной тяги. Также, при полетах на большой высоте, самолет экономит топливо до 80% в отличие от высоты до километра.

За счет чего самолет находится в воздухе

Чтобы ответить, почему самолеты летают, необходимо поочередно разобрать принципы его перемещения в воздухе. Реактивный авиалайнер с пассажирами на борту достигает несколько тонн, но при этом, легко взлетает и осуществляет тысячекилометровый перелет.

На движение в воздухе влияют и динамические свойства аппарата, конструкции агрегатов, формирующие полетную конфигурацию.

Силы, влияющие на движение самолета в воздухе

Работа авиалайнера начинается с запуска двигателя. Небольшие суда работают на поршневых двигателях, вращающих воздушные винты, при этом создается тяга, помогающая воздушному судну перемещаться в воздушном пространстве.

Большие авиалайнеры работают на реактивных двигателях, которые в процессе работы выбрасывают много воздуха, при этом реактивная сила приводит летательный аппарат к движению вперед.

Почему же самолет взлетает и находится долгое время в воздухе? Так как форма крыльев имеет разную конфигурацию: сверху округлая, а снизу плоская , то поток воздуха с обеих сторон не одинаковый. Сверху крыльев воздух скользит и становится разреженным, а давление его меньше, чем воздух снизу крыла. Потому, посредством неравномерного давления воздуха и форме крыльев, возникает сила, приводящая к взлету самолета вверх.

Но чтобы авиалайнер мог легко оторваться от земли, ему необходимо на высокой скорости совершить разбег по взлетной полосе.

Из этого следует вывод, чтобы авиалайнер беспрепятственно находился в полете, ему необходим движущийся воздух, который рассекают крылья и создает подъемную силу.

Взлет самолета и его скорость

Многих пассажиров интересует вопрос, какую скорость развивает самолет при взлете? Существует ошибочное представление, что скорость взлета для каждого самолета одинакова. Чтобы ответить на вопрос, какая скорость самолета при взлете, следует обратить внимание на немаловажные факторы.

  1. Авиалайнер не имеет строго фиксированной скорости. Подъемная сила воздушного лайнера зависит от его массы и длины крыльев . Взлет совершается тогда, когда при встречном потоке создается подъемная сила, которая на много больше массы самолета. Поэтому, взлет и скорость воздушного аппарата зависит от направления ветра, атмосферного давления, влажности, осадков, длины и состояния взлетной полосы.
  2. Чтобы создать подъемную силу и удачно выполнить отрыв от земли, самолету необходимо набрать максимальную взлетную скорость и достаточный разбег . Для этого требуются длинные взлетные полосы. Чем большегрузный самолет, тем требуются длиннее взлетно-посадочная полоса.
  3. Для каждого самолета существует своя шкала взлетных скоростей, потому что все они имеют свое предназначение: пассажирский, спортивный, грузовой. Чем легче самолет, тем взлетная скорость значительно ниже и наоборот.

Взлет пассажирского реактивного самолета Boeing 737

  • Разбег авиалайнера по взлетной полосе начинается, когда двигатель достигнет 800 оборотов в минуту, пилот потихоньку отпускает тормоза и держит рычаг управления на нейтральном уровне. Затем самолет продолжает движение на трех колесах;
  • Перед отрывом от земли скорость лайнера должна достигнуть 180 км в час . Затем летчик тянет рычаг, что приводит к отклонению щитков – закрылков и поднятию носовой части самолета. Далее разгон производится на двух колесах;
  • После, с приподнятой носовой частью, авиалайнер разгоняется на двух колесах до 220 км в час , а затем производится отрыв от земли.

Поэтому, если вы хотите подробнее узнать, как взлетает самолет, на какую высоту и с какой скоростью, мы предлагаем вам эту информацию в нашей статье. Надеемся, что от воздушного путешествия вы получите огромное удовольствие.

Сегодня развеем страхи авиапассажиров от взлета современного лайнера.

Написать сейчас опус меня сподвиг один из читателей, который прислал ссылки на пару взлетов из аэропорта Курумоч (Самара), снятого любопытными пассажирами из салона самолета.

В данных видео привлекли комментарии. Что ж, вот они:

Комментарии к нему:

И комментарии:

Оба случая объединяет один признак — пилоты «сходу пошли на взлет!»

Кошмар ведь, не правда ли?!!

Пассажиры со стажем наверняка помнят ритуал, повторяющийся практически в каждом взлете советского лайнера — самолет останавливается в начале полосы, затем некоторое время стоит — пилоты дают пассажирам помолиться.. да чего скрывать — они и сами в это время «молились» — так в шутку называют чтение карты контрольных проверок. После чего двигатели резко начинают сильно реветь, самолет — дрожать, пассажиры креститься… пилот отпускает тормоза и неведомая сила начинает вжимать притихших пассажиров в их кресла. Все трясется, полки открываются, у проводников что-то падает…

И вдруг, разумеется совершенно случайно, самолет взлетает. Становится немного тише, можно перевести дух… Но вдруг самолет начинает падать вниз!

В последний момент пилоты как правило «выравнивают лайнер», после этого еще пару раз «выключаются турбины» в наборе высоты, ну а потом все становится обычно. Стюардессы с каменными лицами разносят соки-воды, для тех, кто плохо молился — кислородную маску. А затем начинается главное, ради чего и летают пассажиры — разносят еду.

Ничего не упустил? Вроде такие отзывы о полетах я читал неоднократно на непрофильных форумах.

Давайте разберемся.

Прямо сразу расставим точки над ё по поводу остановки лайнера на полосе перед взлетом. Как все же должны делать пилоты — останавливаться или нет?

Ответ таков — и так и эдак правильно. Современная методика взлета рекомендует НЕ останавливаеться на полосе, если на то нет веских причин. Под такими причинами могут скрываться:

  • а) Диспетчер пока еще думает — выпускать Вас или подержать еще маленько
  • б) Полоса имеет ограниченную длину.

По пункту А, думаю, все понятно.

По пункту Б скажу следующее — если ВПП (полоса) действительно очень короткая, а самолет загружен так, чтобы только-только масса проходила для этой длины — в этом случае имеет смысл сэкономить несколько десятков метров и вывести двигатель на повышенный режим, удерживая самолет на тормозах. Или же ВПП просто ну очень непривычно короткая, пусть даже самолет легкий. В этом случае пилот тоже «на всякий случай» так сделает.

Например, мы используем такой взлет в Шамбери. Там ВПП всего два километра, а впереди горы. Хочется как можно быстрее оторваться от земли и умчатся повыше. И обычно масса там приближена к максимально возможно для условий взлета.

В подавляющем большинстве случаев, если диспетчер нам разрешил взлет одновременно с занятием полосы — мы не будем останавливаться. Мы вырулим на осевую линию (причем, возможно, что уже с ускорением), убедимся в устойчивом прямолинейном движении самолета, и после этого «дадим по газам».

А как же «помолиться»? Ведь выше ж написано про некую «карту контрольных проверок!»

На В737 ее принято зачитывать до получения разрешения на занятие полосы. И уж точно до получения разрешения на взлет. Поэтому, когда я получаю разрешение на взлет одновременно с разрешением занять полосу, я уже готов ко взлету, и я совсем не тороплюсь, как это может показаться пассажиру в салоне. У меня уже все готово.

Так зачем же все-таки так делать? Почему бы не постоять?

Очевидные плюсы — увеличение пропускной способности аэропорта. Чем меньше времени каждый отдельно взятый самолет занимает полосу, тем больше взлетно-посадочных операций с нее можно произвести.

Второе — экономия топлива.

Третье — безопасность. Как ни странно это звучит, но это уменьшает риск попадания посторонних объектов (в двигатель) и помпажа (читай, «отказа») двигателя при взлете с сильным попутным ветром.

Почему пилоты так резко задирают нос после взлета? Вот на советской технике это делали плавно, не спеша… Ведь не ровен час, уронят нафиг!

Тут голая аэродинамика и методика выполнения взлета. Иномарки как правило взлетают с очень небольшим углом отклонения механизации крыла (те забавные штуки, которые особенно сильно вылезают из крыла на посадке, и немного на взлете). Это дает много преимуществ:

  • а) Увеличивается угол набора
  • б) следствие из пункта А: уменьшается шум на местности,
  • в) и далее — увеличиваются шансы не влететь в препятствия в случае отказа двигателя

Да, современные лайнеры имеют такие мощные двигатели, что все нормируемые значения градиентов набора достигаются и при пониженной тяге (ее все равно будет достаточно при потере двигателя), но в некоторых ситуациях мистер Боинг настоятельно рекомендует взлетать на максимально возможно тяге. Если самолет легкий — получается просто классный аттракцион «Ракета».

Да, это создает некий дискомфорт для пассажиров (кому нравится лететь с задранными ногами) — но это абсолютно безопасно и будет длиться не очень долго.

«Почти упали после взлета»

Выше я написал, что самолет после взлета вдруг «начинает падать вниз!» Вот это особо хорошо чувствовалось на Ту-154, который натужно взлетал с довольно большим углом положения закрылков, и далее постепенно убирал их в нулевое положение. При уборке закрылков самолет теряет часть прироста подъемной силы (если убрать чересчур быстро, то можно и высоту потерять на самом деле — это правда, но для этого надо быть совсем уж неумелым пилотом, причем оба пилота должны быть неумехами), поэтому в салоне кажется, что самолет начал падать.

На самом деле он может в это время продолжать набор высоты. Просто угол становится более пологим и в этот переходный момент времени человеку кажется, что он летит вниз. Так уже устроен человек.

«Пару раз выключались турбины»

О, это наиболее частое происшествие в рассказах пассажиров! Конкурировать с этим могут только «пилот лишь с пятой попытки попали на аэродром». Наиболее характерно это было для Ту-154 и Ту-134, то есть, на самолетах с двигателями, расположенными далеко в хвосте — их в салоне почти не слышно, если они только не работают на повышенном режиме.

В шуме как раз-таки и загвоздка. Все примитивно до безобразия. В наборе высоты двигатели работают на очень высоком режиме. Чем выше режим работы двигателей — тем громче его слышно. Но иногда нам, пилотам, приходится выполнять команды диспетчера и прекращать набор высоты — например для того, чтобы разминуться (на безопасном удалении, конечно же) с другим самолетом. Мы плавно переводим самолет в горизонтальный полет, а чтобы не превратиться в сверхзвуковой лайнер (ведь двигатели, работающие на режиме набора создают очень большую тягу), приходится прибирать режим. В салоне становится значительно тише.